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ABSTRACT

The mifIRor project investigates the implications
of multimedia information retrieval on database
design. We assume a modern extensible database
system with extensions for feature based search
techniques. The multimedia query processor has
to bridge the gap between the user’s high level in-
formation need and the search techniques avail-
able in the database. We therefore propose an
iterative query process using relevance feedback.
The query processor identifies which of the avail-
able representations are most promising for an-
swering the query. In addition, it combines evi-
dence from different sources. Our multimedia re-
trieval model is a generalization of a well-known
text retrieval model. We discuss our prototype
implementation of this model, based on Bayesian
reasoning over a concept space of automatically
generated clusters. The experimentation plat-
form uses structural object-orientation to model
the data and its meta-data flexibly, without com-
promising efficiency and scalability. We illustrate
our approach with some first experiments with
text and music retrieval.

Keywords: Multimedia Information Retrieval,
Digital Libraries, Multimedia Query Process-
ing, Inference Network Retrieval Model

1 INTRODUCTION

Large archives of digitized multimedia data are
set up today, and more and more digitized data
will become available online. Digitized multime-
dia data cannot be searched directly on its bi-
nary content. Content-based access to multime-
dia data therefore requires meta-data about the
objects. Meta-data may be manually added de-
scriptions, but can also consist of automatically
extracted features. Such features are low-level
representations of multimedia data, like color dis-
tribution and texture [10].
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Figure 1: Multimedia database architecture

Traditional database technology, mainly devel-
oped for administrative applications, has severe
shortcomings with respect to the support of mul-
timedia digital libraries. The access to the digi-
tized multimedia objects, the extraction of meta-
data from these objects, and the management of
the objects and the meta-data, all have charac-
teristics very different from administrative appli-
cations. In the miflRor project, we study these
different requirements on database support, with
the purpose to design multimedia database man-
agement systems accordingly.

The mifIRor database architecture is especially
targeted to support application development in
the multimedia digital library environment. It
consists of three layers, corresponding to the three
light gray boxes in figure 1. At the bottom,
we assume an extensible database system, with
extension modules (also known as ‘data blades’
or ‘data cartridges’) that provide abstract data
types (ADTs) encapsulating feature spaces and
their distance measures. Our research concen-
trates on the query processor in the middle box.
At the top, we assume a user interface that sup-
ports the interaction between the user and the
multimedia database.

In [7] and [5], we describe our view on the



bottom laver. We introduce an open distributed
architecture for the management of multimedia
data and its associated meta-data. Using this
architecture. many independent parties can eas-
ilv cooperate in the construction of a digital li-
brary. The extraction of meta-data from the
objects in the library is a transparent process
and takes place automatically when new data be-
comes available. A very important aspect of the
architecture is modular extensibility. New data
formats and new meta-data extraction software
can be easily "plugged in’.

Users typically do not know how to express
their information needs in database queries, mak-
ing the support of multimedia retrieval a tough
problem. As we argued in more detail in [8],
textual queries cannot capture the full seman-
tics of multimedia data. Content-based retrieval
techniques may provide the “missing’ semantics.
Querying multimedia data using feature models
is performed using example objects; a distance
measure between the feature representations of
two multimedia objects expresses the similarity
between those objects. However, the gap between
the meta-data used in the content-based retrieval
techniques and the concepts in the users’ minds
is too big. We term this the query formulation
problem.

The query processor in the middle layer bridges
this gap between user and extensible database
svstem. In the remainder of the paper we fo-
cus on its design and implementation. We start
with an informal example in section 2, illustrat-
ing the query formulation problem in multimedia
databases. Next. we introduce in section 3 our
approach to multimedia query processing. We
discuss the design and implementation of our pro-
totype multimedia database management system
in section 4. We are especially concerned with the
issues of efficiency and scalability of the architec-
ture. In section 5. we demonstrate the function-
ality supported in our system with some (small-
scale) experiments in text and music retrieval.

2 THE PROBLEM OF QUERY FORMU-
LATION

Imagine a journalist writing an article on the ef-
fects of the recent economical crisis in Asia. Part
of the journalist’s task is to illustrate the article
with photos that hopefully attract readers and
increase the sales of the magazine or news paper.
A study of journalists at work, reported in [15].
made clear that for such ‘feature articles’. jour-

nalists have more freedom than with normal news
items. For example, the function of the photo
may also be to evoke associations. Also. there is
more time to find a ‘good’ photo.

A journalist usually considers more than one
concept for a single lustration task. For the eco-
nomical crisis example, a possible concept could
be a very crowded stock market. Another illus-
tration idea is a photo demonstrating that normal
people do not have much money left to spend, for
example by showing an empty shopping street in
otherwise crowded Hong Kong. In both cases,
a photo expressing despair or panic is probably
preferred over photos without explicit emotions.
Furthermore, constraints like overall page layout
may affect the choices made while performing the
illustration task.

Assume now that the journalist has access to
a video archive of news bulletins originating from
various broadcasters. In the archive. the time,
date. and source are maintained for each news
bulletin. The video data itself is modelled with
a sequence of key-frames. and a text version of
the audio track. The content of the kev-frames
is indexed using color and texture features. For
comparison, a news archive storing similar meta-
data is described in [13].

Searching for ‘stock market” in the subtitles
may be rather succesful as an initial query. The
precision of the results is probably high, mean-
ing that most key-frames with matching subtitles
really show stock market scenes. However, the
recall may be low: many scenes at stock markets
may not have been labelled with an explicit anno-
tation mentioning ‘stock market’. Note that this
problem will be much worse for the second illus-
tration idea, using ‘Hong Kong shopping street’
as a text query.

Emotional aspects of the images searched are
especially hard to capture in a textual query.
Searching for ‘despair’ in subtitles will prabably
not retrieve many useful results. These aspects
of the illustration task may be captured more
easily in terms of feature representations of the
images. However, the journalist cannot possibly
be expected to express a high level concept like
"despair’ in a combination of color and texture
features. Conversely, the internal representation
of the video with its meta-data should be com-
pletely invisible to the users.



3  MULTIMEDIA QUERY PROCESSING

3.1 DESIDERATA

The query formulation problem leads to a differ-
ent view on query processing than common in the
database community. Instead of a one step pro-
cess with a single query, and the database sim-
ply retrieving its matching objects, the interac-
tion between a multimedia database and the user
should be a dialogue. The query processor should
iteratively interpret the user’s judgements on the
results of the previous step, and adapt the ini-
tial query such that it will better reflect the ob-
served but unknown information need. It derives
database queries against the meta-data, using in-
formation from the interaction with the user.

An iterative approach to query processing is al-
ready common in information retrieval (IR) sys-
tems [24]. We therefore base the miflRor query
processor on the theory and techniques developed
in the IR research field [6]. However, a multime-
dia database management system differs signifi-
cantly from a special purpose text retrieval sys-
tem. The management of multimedia data re-
quires extensible systems [7, 5]. IR systems are
not designed for extensibility. The implementa-
tions assume detailed knowledge about the struc-
ture of the indexed documents and the meta-data
that models the content. In an extensible sys-
tem however, we do not know beforehand what
representations of the multimedia objects will be
available as meta-data at run-time.

A somewhat related difference between IR and
multimedia databases is the number of sources
of evidence used in the retrieval process. In IR,
only a small number of different sources is consid-
ered, e.g. abstract, full text, citations, and maybe
hypertext links. On the other hand, the combi-
nation of evidence from many different sources
is crucial for multimedia retrieval. Experiments
with the Foureyes learning agent for the Pho-
tobook image retrieval system demonstrated the
advantages of a collection of data-dependent and
task-dependent feature spaces over a universal
similarity measure defined on a generic feature
space [16, 17]. Different feature spaces capture
different aspects of the data. Typically, a fea-
ture space performs only well at a small set of
tasks, on only a subset of the data. Rather than
a carefully selected ‘society’ of models as envi-
sioned in Foureyes, ‘anarchy’ seems however a
more appropriate metaphore in our context; in-
deed, in miflRor the collection of feature spaces
changes dynamically as new meta-data extraction

software is added or removed.

3.2 RETRIEVAL MODEL

Figure 2 proposes the design of the mifIRor query
processor. An IR system is described by its re-
trieval model, which defines the document rep-
resentation, the query formulation, and the rank-
ing function [26]. These three aspects are re-
flected in the design of our multimedia query pro-
cessor, in subsequently the concept layer (doc-
ument representation), the evidential reason-
ing layer (ranking function), and the relevance
feedback layer (query formulation).
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Figure 2: The multimedia query processor

3.2.1 Concept layer

The concept layer defines the basic units repre-
senting the content of the multimedia objects. IR
literature usually refers to these units as the in-
dexing features; to avoid confusion with the
features used in content-based multimedia re-
trieval, we prefer to call these concepts. The
concepts are input to the evidential reasoning
layer, which selects the objects in the database
that best match the user’s query.

Most IR systems use the words occuring in the
document as concepts. In text documents, words
naturally refer to classes of objects in the real
world. For example, the word ‘street’ occuring
in an English text is the same, whether that par-
ticular street is located in Cambridge or Oxford.
Sometimes, words occuring in the text are first
clustered, using stemming algorithms and the-
sauri. This may alleviate the problems with am-
biguity in natural language.

In multimedia retrieval, the content represen-
tation of objects is a (usually unique) point in
multi-dimensional feature space. Therefore, an
important task of the concept layer is feature
clustering. The feature representation of a



street in Cambridge will be different from the
representation of a similar street in Oxford. To
complicate matters, the representation of one and
the same street in two different images will usu-
ally be different as well. Hence, before we can
develop a theory for multimedia retrieval similar
to the retrieval models in IR, we have to cluster
these points, based on their relative positions in
feature space.

The concept layer uses unsupervised clustering
algorithms to identify clusters in feature space.
Of course, we realize that not no algorithm will
automatically cluster all streets in a single con-
cept. Nor do we expect to construct concepts
that only occur in a subset of the streets but in no
other classes of objects. However, the assumption
underlying the content-based retrieval techniques
is that proximity between points in feature space
corresponds to some sort of similarity in the real
world. Thus, the proximity of the clusters’ fea-
ture points is likely to reveal an implicit underly-
ing concept that captures some of the semantics
of the objects.

3.2.2 Evidential reasoning layer

The responsibility of the evidential reasoning
layer is to identify the multimedia objects in the
database that may fulfill the user’s information
need as expressed in the query. The evidence is
based on the presence or absence of concepts, very
similar to traditional IR. The evidential reason-
ing process combines the evidence from different
sources into a single judgement. It should take
into account the structural composition of objects
from their component objects. We discuss the ev-
idential reasoning layer in more detail in section
3.3.

3.2.3 Relevance feedback layer

The relevance feedback layer has two tasks.
First, it is responsible for query (re-)formulation.
It controls the dialogue between the user and
database, analyzing the user’s feedback infor-
mation and changing the query such that it
{(hopefully) better reflects the user’s information
need. We term this online processing query-
space modification. Second, the relevance feed-
back layer maintains a history for offline process-
ing, logging the interaction between users and
database. Supervised clustering techniques may
use these logs to improve the initial clustering
constructed in the concept layer. Also, statistical
tests may identify dependencies between feature

spaces. We refer to this task as object-space
modification. Although we regard both types
of feedback as important, we currently focus on
query-space modification.

3.3 REASONING LAYER

The ‘probability ranking principle’ states that an
object ranking is optimal when the objects are
ranked by their probability of relevance to the
user [24, p. 113]. Many competing IR theories
can be used to estimate these probabilities. We
base our theory for multimedia retrieval on the
inference network retrieval model, introduced by
Turtle and Croft {22, 23]. It has been shown that
this probabilistic model can also express other
common retrieval models, such as the Boolean
and the vector space model. The model is based
on the theory of Bayesian belief networks. A
Bayesian belief network is a graph representation
of probabilistic knowledge. In a belief network,
nodes represent random variables, and arcs re-
flect relationships between the linked variables.
The direction of an arc between parent node and
child node represents causality. The strength of
this causal influence is expressed by a conditional
probability. A belief network encodes a joint
probability distribution. The advantage of the
network representation of this distribution is that
inference procedures exist to compute the value of
any conditional probability in the network given
the available evidence, without having to derive a
closed form formula for the complete distribution.
The reader is referred to [19] for more details.

Turtle and Croft claim advantages of their
model over different retrieval models because of
its theoretical foundation in Bayesian belief net-
works. Unfortunately, due to the simplifications
made to the inference procedure and the network
structure (trading mathematical correctness for
efficiency), it is hardly possible to take advantage
of theoretical developments in the more general
theory of Bayesian networks. Nevertheless, we
take this model as a starting point for the devel-
opment of a theory for multimedia information
retrieval [6]. It is very suited for our purpose,
since it has been introduced in IR to combine ev-
idence from different sources more easily. Also,
it has a modular structure that reflects the ar-
chitecture’s extensibility. Most importantly, its
implementation in the InQuery retrieval system
has been very succesful in many IR evaluation
experiments.
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Figure 3: A multimedia retrieval model based on
Bayesian inference networks

3.3.1 The network structure

Using figure 3, we first explain the general idea
behind miflRor’s version of the inference network
retrieval model. Each base type, e.g. image or
audio. has its own media extension M,. A me-
dia extension. depicted as a dark gray box in the
figure, manages a collection of content represen-
tations F;, shown as light gray boxes. The nodes
in the network represent binary random variables.
The top part of the network is called the object
network and is static for a given data collection.
The bottom part, the query network, is dy-
namically created by the relevance feedback layer,
based on interaction with the user.

At the roots of the network, we find the object
nodes O,. For now, we will ignore the internal
structure of the multimedia objects; all objects
are considered atomic. In section 5.2, we discuss
the retrieval of compound documents to illustrate
a possible approach to modelling structured ob-
jects. The objects O, are connected to their meta-
data representations of content F;. The con-
cept nodes C,, represent the concepts identified
by clustering in the concept layer. The model al-
lows concept clusters to overlap. Thus, a single
representation node may be connected to several
concept nodes. Node 7 in the query network rep-
resents the user’s information need. The infor-
mation need is expressed by the example objects
provided by the user in the interaction process.
The query nodes g, model these example objects.
The meta-data extracted from these objects is
represented by the f; nodes. These nodes are
connected to their corresponding concept nodes
in the static object network. In the dialogue be-
tween database and user. the relevance feedback
layer adapts the structure of the query network
by adding or removing nodes.

Let us take a closer look at the example in-
stantiation of the network model given in figure
3. Assume that M, is an inage media extension.
It manages feature spaces F; for color and F; for
texture. Image object O has a color feature F,
and a texture feature Fy. Color feature F; has
been clustered into concept Cy. and texture fea-
tures Fy and Fy into concept Cy. Color represen-
tation f; and texture representation f,. extracted
from the example image q;. are part of the same
clusters in feature space, hence also connected to
C, and C; respectively.

3.3.2 Ranking objects

The inference network is used to compute
Pr(Z10;). which corresponds to the chance that
the information need as expressed in the query
network is fulfilled when presenting this object
to the user. The random variables associated to
the objects and their meta-data represent obser-
vations. In the ranking process, each object O, is
considered in isolation: its node is set to true, and
all other nodes to false. This evidence is prop-
agated through the network until it reaches T,
when we have computed the desired Pr(Z]0;).

The joint probability distribution encoded in
the object network is independent of the query.
In our current model, observing O, always im-
plies observing its meta-data F;. We assume the
feature spaces independent and equally impor-
tant. In later revisions of the retrieval model.
we may use the conditional probability distribu-
tion Pr(F;|0;) to represent knowledge about how
reliably each feature space describes an object.
Pr(Cp|F;) expresses the belief that concept C, is
observed when we observe feature F;. This prob-
ability should be estimated in the feature clus-
tering process. Similarly, Pr(f;|C,), specified at
the arcs connecting the object network with the
query network, describes our belief that feature
f; in query space is described by the concept C,
in object space.

Instead of first computing these probabilities
independently, and then propagating the belief
to the nodes f; in the query network, the im-
plementation of the inference network retrieval
model computes Pr(f;]0,) directly. In InQuery,
this probability is estimated using term frequency
tf, inverse document frequency idf. and default
belief a:

Pr(f;|O:) =a+ (1 —a) - tf - idf (1)

In a multimedia feature space, we have to define
a procedure to estimate this probability using the



relative position of that point in a cluster and the
distribution of other points in the cluster. An
unsupervised clustering algorithm like AutoClass
provides such an estimate [4]. As an alternative,
we plan to investigate the cluster-based probabil-
ity model that has been proposed in [20].

3.8.3 Propagation of evidence

To explain the propagation of evidence from the
f; through the query network to Z, we intro-
duce a formal description of the inference network
adapted from [21]. Let z; be a node in a Bayesian
network G, and 'z, be the set of parents of this
node. Since G is a Bayesian belief network, the in-
fluence of Iy, on z; is specified by the conditional
probability distribution Pr(z;|I';,). Let the cardi-
nality of I'z, be n, and the random variables be bi-
nary like in our retrieval model. Then we have to
specify 2" different probabilities to describe this
conditional distribution. Obviously, this is prob-
lematic for the computational tractability of the
inference. Therefore, we have to find an approx-
imation of the real probability table (also known
as link matrix).

Note that, for a node z;, the influence of Ty,
on z; can be specified by any function F(z;,z;)
that satisfies:

> F)=1 2)
yeY
0<F(y)<1 (3)

where Y is defined as z; x I',. In the general
theory of belief networks, functions approximat-
ing Pr(z;|T'z,) have been used to model causal
independence efficiently: the case when mul-
tiple causes contribute independently to a com-
mon effect. A famous example is the ‘noisy-or’
model [19]. In his thesis, Turtle gives closed-
form expressions for a limited subclass of func-
tions F(x;,ly,), that are useful in IR and can
be evaluated in O(n). Greiff gives a larger class
of functions, described by so-called PIC-matrices,
for which the evaluation depends on the number
of parents that are true but not on their ordering
[12]. He first provides an evaluation procedure in
O(n?), and then gives an algorithm in O(n) for
a subclass of these PIC-matrices. Functions in
these classes are ‘sum’, probabilistic versions of
logical operators ‘and’ and ‘or’, as well as vari-
ations of these usually referred to as ‘pnorm’-
operators. These functions are all part of In-
Query’s language to describe the structure of the
query network.

Of course, an approximation of Pr(z;|'y,) with
a different function F(z;, [';,) is only semantically
valid if this function behaves similar to the true
probability distribution. The succes of the re-
trieval system InQuery, that is based on the in-
ference network retrieval model, is often given as
‘proof’ that these functions really model the true
probabilistic dependencies between for example
the concepts and the document’s relevance. We
do not agree with this line of reasoning. The ex-
periments with InQuery demonstrate only that
the computed value for Pr(Z|O;) may be inter-
preted as a good approximation of the probability
of relevance of the O;. The distribution captured
by the complete network apparently reflects its
desired interpretation in the real world. How-
ever, we should not deduce that the probability
estimates for the nodes z; and their parents also
have an interpretation regardless of the choice of
F(z;,Tz,). This observation is confirmed by the
difficulties with chosing an optimal value for de-
fault belief « (cf. equation 1) in the experiments
with ‘pnorm’-operators reported in {12]. Despite
of these limitations, the inference network re-
trieval model is a very powerful model because of
its ability to flexibly model varying approaches to
the combination of evidence from different repre-
sentations. Also, the original Bayesian belief net-
work underlying the retrieval model, without its
approximations used to achieve tractability, can
still be used as a reference when we want to un-
derstand why some operator combined with some
formula estimating the concept probabilities does
or does not work well.

4 DESIGN AND IMPLEMENTATION

The implementation of mifiRor’s multimedia
query processor requires the integration of IR and
databases. Integration of IR and databases has
historically led to impractically slow systems; the
efficient execution of IR techniques required spe-
cial purpose software systems. We believe that
IR and databases can be integrated in a single
system, but only if this integration is complete,
and neither a layer on top of, nor a black box in-
side a database system. Therefore, our prototype
implementation is based on structural object-
orientation. A detailed discussion of the ben-
efits of structural object-orientation for IR pro-
cessing in a database system can be found in [9].

Figure 4 shows the design of our research pro-
totype. The design is focused on the develop-
ment of a system that will scale up to very large
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Figure 4: Design

data collections. Its main characteristic is the
strict separation between the logical and physi-
cal databases. This separation provides data in-
dependence, and allows for algebraic query opti-
mization in the translation from expressions at
the logical level to queries executed in the physi-
cal database. Also, parallellization of the physical
algebra is orthogonal to the logical algebra, such
that we can transparently distribute the data over
different database servers by changing only the
mapping between the two views. In this paper,
we only discuss query processing at the logical
level. The interested reader is referred to [9] for a
discussion of the implementation in the physical
database.

MOA is an object algebra for the logical level,
being developed by our research group. It pro-
vides an extensible nested object data model and
an algebra on this model. The prototype imple-
mentation does not yet provide a query language
at the conceptual level; queries can only be spec-
ified using MOA expressions. The MOA Tools
translate the query expressions specified in MOA
into efficient MIL programs' that are executed in
the Monet database system [1]. Monet is an ex-
tensible parallel database kernel that is intended
to serve as a backend in various application do-
mains [2]; e.g., image retrieval is supported by
an extension module defining the ‘Acoi’ algebra
[18]. Monet has also been used succesfully for
geographic information systems as well as com-
mercial data mining applications.

MOA’s data model is based on base types and
structuring primitives. Base types are ADT-
style types. They are inherited from the physical
database schema, including common types such
as int and str, but also large object types like
Image. A structuring primitive combines known
types to create a structured type. Common
examples in object-oriented data models are bag,
set, and tuple. To demonstrate the specification

IMIL stands for Monet Interface Language

of multimedia data collections in MOA, we give
in example 1 the definition of a structured data
type for the video archive mentioned in section 2.

Example 1
BAG<
TUPLE<
time: Atomic<Time>,
date: Atomic<Date>,
keyframes: LIST<

Atomic<Image>
>,
audiotrack: Atomic<Audio>,
transcript: Atomic<Text>
>

>3
In the implementation of the query processor,
we perform the evidential reasoning process as
database queries. For this purpose, we extend
MOA with structures for components of the in-
ference network. Operations on these structures
model the propagation of beliefs within a compo-
nent. The resulting language allows us to spec-
ify many different network topologies, by simply
choosing varying operators to combine different
sources of evidence. The relevance feedback layer
can thus adapt the network structure by simply
generating different MOA expressions.

For the integration of content-based querying
in MOA, we first define a structure that encapsu-
lates the object network. The CONTREP structure
is defined as the content representation of object
O; in feature space F. If an object has meta-data
representations in several feature spaces, then
each combination of object and feature space is
modelled in a distinct instantiation of this struc-
ture. The concept layer constructs a CONTREP
from the output of the feature clustering process.
Recall that the Pr(f;|O;) are estimated directly
from the statistical distribution of occurrences of
C, in O; and in the collection. Therefore, we can
sufficiently describe the object network for O; by
the C, present in the object. Thus, a CONTREP
stores the connections from node O; to its asso-
ciated nodes C, in F. In the current prototype,
the clustering of a set of features is performed
outside the database, and the CONTREP structures
are bulk-loaded from files describing the identified
concepts.

We also extend MOA with two other struc-
tures, that allow us to specify the propagation of
evidence through the query network. The INFNET
structure models a node z; with its parents I'y,.



It can be constructed from a set of probabilities,
in which each value corresponds to the belief in a
node of I'; . The structure defines operators for
the class of functions F{x,. [} that is expressed
by PIC-matrices [12]. DOCNET is a specialization
of INFNET that is optimized for the assignment of
default beliefs a to nodes that do not occur in the
content representation of an object.

The three structure extensions interact as fol-
lows in the computation of Pr(Zj0;). The rel-
evance feedback layer constructs a querv net-
work, based on the example objects provided
by the user. In the first step of belief com-
putation, CONTREP's operation getBL connects
the query network to the object network. Its
operands are the f, nodes of the same feature
space as the CONTREP, and a structure represent-
ing global statistics of the feature space. This op-
eration computes estimates of Pr{f;/0,}. return-
ing a DOCNET structure capturing the instantia-
tion of the nodes at the top level of the query net-
work. A belief operator F(g,.T'y, ) then computes
an estimate of Pr(g,[T'y, ). Next, we repeat con-
structing an INFNET from these estimated prob-
abilities, and computing the belief in the nodes
at the next level of the query network. until we
reach node Z. We then have computed Pr(Z|0;)
using the joint probability distribution described
by the inference network.

Example 2

BAG<
TUPLE<
time: Atomic<Time>,
date: Atomic<Date>,

keyframes:
LIST<
TUPLE<
keyframe: Atomic<Image>,
color: CONTREP,
texture: CONTREP
>
>!
audiotrack: Atomic<Audio>,
transcript:
TUPLE<
transcript: Atomic<Text>,
content: CONTREP
>
>
>;

In combination with standard MOA structures
like bag and tuple, we can now define and manip-

ulate multimedia data collections and their meta-
data. For each feature space modelling the con-
tent of a multimedia object, we define a CONTREP
structure. Since this structure is an orthogonal
extension of MOA, we can also query the collec-
tion on the combination of content with conven-
tional attributes. For example, we can easily re-
strict the query results of a content query to a
ranking of only last week’s news bulletins. Ex-
ample 2 extends the type definition for the video
archive example with its content representations.
Of course, the content representations may be
hidden from end users, such that they only see
the definition of example 1.

5 EXAMPLES

5.1 TEXT RETRIEVAL

We first implemented a simplified version of the
original inference network retrieval model, leav-
ing out its proximity operators. Assurne now that
docs is a bag of content representations of text
documents, query is a collection of query terms,
and stats provides collection statistics such as
:df . The MOA expression in example 3 computes
Pr(Z]0,) as described in the previous section. A
map on a bag performs an operation on all el-
ements of the bag. In the specification of the
operation to be performed, the bag’s element is
referred to as THIS. Since the getBL constructs
a DOCNET, the inner map converts the bag of doc-
ument representations in a bag of DOCNET struc-
tures. The outer map uses the ‘sum’ belief oper-
ator to compute the probability of relevance for
each document.

Example 3

map [sum(THIS)] (
map [getBL( THIS,
query, stats ) 1( docs )));

5.2 COMPOUND DOCUMENTS

In the discussion of our retrieval model so far, the
objects O; have been assumed atomic. We will
now rank compound documents on logical units
like sections or chapters, rather than on their full
content. In example 4, we model the content of a
news document as a bag of items. The topology
of the inference network specified by this partic-
ular query is taken from [3]. These experiments
suggested that the best results are achieved when



a document is ranked by the contribution of its
best section. Note the use of the INFNET construc-
tor, to express the belief propagation through an
extra layer of nodes in the query network.

Example 4

e data definition for compound documents:

BAG<
TUPLE<
Category : str,
Content : BAG< CONTREP >
>
>

e ranking news documents by their best items:

map [max ( INFNET<THIS> ) 1(
map[ map[ sum(getBL( THIS,
query, stats ))](
THIS.Content ) ] ( docs )));

5.3 MUSIC RETRIEVAL

We conclude the paper with a small scale multi-
media. retrieval experiment using our experimen-
tation platform. The results should not be given
more status than just ‘proof of concept’. Al-
though the experimental evaluation has not been
very thorough, the results are encouraging. In-
deed, it seems possible to interactively retrieve
groups of similar songs, in particular for well de-
fined categories.

In multimedia retrieval, emotional and aes-
thetic values play an important role in the user’s
evaluation process [5]. Because subjective judg-
ments seem especially important when we com-
pare music fragments, we decided to try out the
multimedia query processor on a content repre-
sentation of music objects. Note that we assume
the similarity between two fragments to be de-
fined by the overall ‘sound’ of the music. The
extraction of meta-data is based on [25]. We aug-
mented the feature vectors with a simple rhythm
indicator based on peaks in the autocorrelation
function of the lowest parts of the frequency do-
main.

Data set Symbol-1, created in cooperation
with the Dutch company ‘Symbol Automatiser-
ing’, consists of 287 songs. Domain experts of
Symbol Automatisering have manually classified
these songs into six main categories: rock, house,
alternative, easy listening, dance, and classical.
We sampled between one and two minutes of each

song, that we segmented into fragments of 5 sec-
onds each. The result is a data collection of 3363
fragments for which we computed the feature vec-
tors. Feature clustering with Autoclass identified
53 different clusters; we assigned to each feature
vector the concept node according to the clus-
ter with the highest probability. We then mod-
eled a song as a collection of these concepts. We
treated this representation of songs as if they were
text documents in which the concepts are the
words. Thus, we simply used equation 1 to es-
timate Pr(f;|O;). In future experiments, we plan
to evaluate the representation of songs in more
detail, e.g. using the Pr(f;|C,) estimated by Au-
toclass, and using all concepts detected in the
fragment.

We performed the following experiment with
music retrieval from this collection. Simulating
online relevance feedback, we constructed a query
network of the concepts that occurred most fre-
quently in half of the songs belonging to a cate-
gory. We then tried to retrieve other songs of the
same category. Of the top 20 songs for the query
based on ‘rock’, 15 had also been classified man-
ually as rock. Of the other 5 songs, only 2 clearly
do not belong in the rock category. With the
‘classical’ and ‘house’ songs, we found hardly any
misses. Results for the category ‘alternative’ were
however hardly better than chance, but maybe
this is partly because the category is not well de-
fined.

6 CONCLUSION AND FUTURE RE-
SEARCH

We developed a multimedia query processor that
supports the end users of a multimedia database
with query formulation. The architecture is ex-
tensible with new algorithms for meta-data ex-
traction, and the query processor is designed to
use the available representations transparently.
The integration of the content-based query pro-
cessing in MOA also allows the user to query both
the logical and the content structure of multime-
dia. objects. The main contribution of our work
is the design for scalability.

Improving the basic functionality of the pro-
totype is a topic high on our research agenda.
From a technical viewpoint, we should implement
clustering in our architecture. Also, we want to
experiment with multiple representations in the
database. The foundation of the model in the
theory of probabilistic networks provides a strong
theoretical framework [19, 11, 14]. Within this



framework. there is a lot of scope for experiments
and we would like to investigate its use to model
and learn dependencies between representations.

An important but open research issue is the de-
velopment of an evaluation methodology for mul-
timedia retrieval. The inherent subjectivity in
multimedia searching makes it impossible to de-
velop a test suite that is not related to a real
user task. We believe the music domain provides
a context well suited to evaluate how the query
process adapts to subjectivity of the users. How-
ever, content modeling of music is not easy and
the success criteria are vaguely defined. To evalu-
ate the effect of multiple representations and their
interdependencies in retrieval. retrieval from pub-
lishers’ photo and video archives may provide a
better context. However, the challenge in this do-
main is to construct a test suite with realistic user
tasks and clearly defined success factors, with-
out making the evaluation process too expensive
{amount of data) and elaborate (user studies).
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